MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK 4 - SOLUTIONS

Problem 1 (20 points). Let (c,) denote any sequence of real numbers such that 0 < ¢,, < 1. Show
that if (a,) is a sequence defined recursively by a1 = 1 and an41 = ¢, - an, then (a,) converges.
[Hint: You won’t be able to use the definition of a limit directly, as some of these sequences won’t
converge to 0! What tools do we have for proving a limit exists without knowing what the limit is?]

Solution. We claim that a,, is decreasing and bounded below. It will then follow that it converges
by the monotone convergence theorem. First, we claim that a, > 0 for all n. Indeed, this follows

by induction, since a; > 0, and if a,, > 0, then a,+1 = ¢, - a, > 0 since ¢, is also positive
by assumption. Next, we claim that (a,) is decreasing. We will show this directly. Indeed, by
definition, a,41 =¢p - ap < 1-a, = a,. ([l

Problem 2 (40 points). Let (ay,) be a sequence of real numbers such that a,, > 0 for every n € N.
For each, prove or find a counterexample:

(a) If a,, diverges to oo, then 1/a, — 0.

(b) If 1/a, — 0, then (a,) is unbounded.

(¢) If (an) is bounded above, then (1/a,) has a convergent subsequence.
(d) If liminf a, > 0, then (1/a,) has a convergent subsequence.

Solution. (a) This is true. We wish to show that 1/a, — 0. To this end, fix ¢ > 0. Since a,, — oo
and 1/e > 0, there exists some N € N such that if n > N, a,, > 1/ > 0. Therefore, |a,| > 1/¢

and | L] = |-k~ 0| <. Hence, a, — 0.

an

(b) This is true. Fix M > 0. Then 1/M > 0, so since 1/a,, — 0, there exists N such that if n > N,
|1/ay| < 1/M. But then |a,| > M, so M cannot bound |ay|.

(¢) This is false. Consider the squence defined by a, = 1/n. Then a, is bounded above, but
1/a, = n diverges to co.

(d) This is true. We first claim that if liminf a,, > 0, then a,, is bounded below by a positive real
number §. Indeed, since liminfa, > 0, we may set € = liminfa, and choose N such that

lim inf
inf {aj, : k> N} > 0
an, and 0 > 0 since all terms of a, are positive by assumption. Then for all terms of (a,),

0<1/a, <1/6, so (ay) is a bounded sequence. By the Bolzano-Weierstrass theorem, (a,,) has
a convergent subsequence.

. Then 6 = min {al, .. .,aN,l,%liminfan} is a lower bound for

O
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For the next two exercises, we consider the asymptotic variation of a sequence (a,). If (a,) is a
sequence, let V' = limsup a,, — lim inf a,,. We assume throughout that V' < cc.

Problem 3 (20 points). Show that for any ¢ > 0 and N € N, there exist indices m,n € N such
that m,n > N and a,, —a, >V —e¢.

Solution. Fix e > 0. Denote ¢, = supay : k > n and b,, = inf ay, : K > n be the associated sequences,
so that ¢, is a decreasing sequence convering to lim sup a,, and b,, is an increasing sequence converging
to liminf a,. Choose Nj such that if n > N, then limsupa, — ¢, < €/4. Choose Ny such that
if n > Ny, b, — liminfa, < e&/4. Pick N > max{N;, No}. Then by definition of cy,, there exists
m > N such that a,,, > ¢y — &/4. Similarly for by, there exists n > N such that a, < by + /4.
Then

Qm — Gp, > ey — by —€/2 > (limsupa, — /4) — (liminfa, +¢/4) —¢/2=V —¢
(]

Problem 4 (20 points). Give an example of a sequence such that for any two indices m,n € N,
Qm —an, < V. Justify your answer (ie, calculate V for your sequence and prove that your calculation
is correct. Then verify the given property).

Solution. Let a, = (=1)"(1 — 1/n). Observe that |a,| = |1 —1/n| < 1. Hence limsupa, < 1 and
liminfa, > —1. We claim that these are actually equalities. It suffices to find subsequences of a,,
converging to 1 and —1, respectively. Notice that

as, =1—1/(2n) aont1 = —(1—1/(2n +1)).
By the limit arithmetic theorem, as, — 1 and ag,+1 — —1. It follows that V' = limsupa, —
liminfa, =1—-(-1)=2.
Now, we claim that a,, — a, < 2 for all m,n € N. Indeed, notice that —1 < a,,,a, < 1 for all
m,n € N. Hence a,, — a,, is strictly less than the length of the interval, which is 2. O



