MATH3210 - SPRING 2024 - SECTION 004

HOMEWORK $4-$ SOLUTIONS

Problem 1 (20 points). Let $\left(c_{n}\right)$ denote any sequence of real numbers such that $0<c_{n}<1$. Show that if $\left(a_{n}\right)$ is a sequence defined recursively by $a_{1}=1$ and $a_{n+1}=c_{n} \cdot a_{n}$, then $\left(a_{n}\right)$ converges. [Hint: You won't be able to use the definition of a limit directly, as some of these sequences won't converge to 0 ! What tools do we have for proving a limit exists without knowing what the limit is?]

Solution. We claim that a_{n} is decreasing and bounded below. It will then follow that it converges by the monotone convergence theorem. First, we claim that $a_{n} \geq 0$ for all n. Indeed, this follows by induction, since $a_{1}>0$, and if $a_{n}>0$, then $a_{n+1}=c_{n} \cdot a_{n}>0$ since c_{n} is also positive by assumption. Next, we claim that $\left(a_{n}\right)$ is decreasing. We will show this directly. Indeed, by definition, $a_{n+1}=c_{n} \cdot a_{n}<1 \cdot a_{n}=a_{n}$.

Problem 2 (40 points). Let $\left(a_{n}\right)$ be a sequence of real numbers such that $a_{n}>0$ for every $n \in \mathbb{N}$. For each, prove or find a counterexample:
(a) If a_{n} diverges to ∞, then $1 / a_{n} \rightarrow 0$.
(b) If $1 / a_{n} \rightarrow 0$, then $\left(a_{n}\right)$ is unbounded.
(c) If $\left(a_{n}\right)$ is bounded above, then $\left(1 / a_{n}\right)$ has a convergent subsequence.
(d) If liminf $a_{n}>0$, then $\left(1 / a_{n}\right)$ has a convergent subsequence.

Solution. (a) This is true. We wish to show that $1 / a_{n} \rightarrow 0$. To this end, fix $\varepsilon>0$. Since $a_{n} \rightarrow \infty$ and $1 / \varepsilon>0$, there exists some $N \in \mathbb{N}$ such that if $n \geq N, a_{n}>1 / \varepsilon>0$. Therefore, $\left|a_{n}\right|>1 / \varepsilon$ and $\left|\frac{1}{a_{n}}\right|=\left|\frac{1}{a_{n}}-0\right|<\varepsilon$. Hence, $a_{n} \rightarrow 0$.
(b) This is true. Fix $M>0$. Then $1 / M>0$, so since $1 / a_{n} \rightarrow 0$, there exists N such that if $n \geq N$, $\left|1 / a_{n}\right|<1 / M$. But then $\left|a_{n}\right| \geq M$, so M cannot bound $\left|a_{n}\right|$.
(c) This is false. Consider the squence defined by $a_{n}=1 / n$. Then a_{n} is bounded above, but $1 / a_{n}=n$ diverges to ∞.
(d) This is true. We first claim that if $\lim \inf a_{n}>0$, then a_{n} is bounded below by a positive real number δ. Indeed, since $\liminf a_{n}>0$, we may set $\varepsilon=\liminf a_{n}$ and choose N such that $\inf \left\{a_{k}: k \geq N\right\}>\frac{\lim \inf a_{n}}{2}$. Then $\delta=\min \left\{a_{1}, \ldots, a_{N-1}, \frac{1}{2} \lim \inf a_{n}\right\}$ is a lower bound for a_{n}, and $\delta>0$ since all terms of a_{n} are positive by assumption. Then for all terms of $\left(a_{n}\right)$, $0<1 / a_{n} \leq 1 / \delta$, so $\left(a_{n}\right)$ is a bounded sequence. By the Bolzano-Weierstrass theorem, $\left(a_{n}\right)$ has a convergent subsequence.

For the next two exercises, we consider the asymptotic variation of a sequence $\left(a_{n}\right)$. If $\left(a_{n}\right)$ is a sequence, let $V=\limsup a_{n}-\lim \inf a_{n}$. We assume throughout that $V<\infty$.

Problem 3 (20 points). Show that for any $\varepsilon>0$ and $N \in \mathbb{N}$, there exist indices $m, n \in \mathbb{N}$ such that $m, n \geq N$ and $a_{m}-a_{n}>V-\varepsilon$.
Solution. Fix $\varepsilon>0$. Denote $c_{n}=\sup a_{k}: k \geq n$ and $b_{n}=\inf a_{k}: k \geq n$ be the associated sequences, so that c_{n} is a decreasing sequence convering to $\lim \sup a_{n}$ and b_{n} is an increasing sequence converging to $\lim \inf a_{n}$. Choose N_{1} such that if $n \geq N_{1}$, then $\limsup a_{n}-c_{n}<\varepsilon / 4$. Choose N_{2} such that if $n \geq N_{2}, b_{n}-\lim \inf a_{n}<\varepsilon / 4$. Pick $N \geq \max \left\{N_{1}, N_{2}\right\}$. Then by definition of c_{N}, there exists $m \geq N$ such that $a_{m}>c_{N}-\varepsilon / 4$. Similarly for b_{N}, there exists $n \geq N$ such that $a_{n}<b_{N}+\varepsilon / 4$. Then

$$
a_{m}-a_{n}>c_{N}-b_{N}-\varepsilon / 2>\left(\limsup a_{n}-\varepsilon / 4\right)-\left(\liminf a_{n}+\varepsilon / 4\right)-\varepsilon / 2=V-\varepsilon
$$

Problem 4 (20 points). Give an example of a sequence such that for any two indices $m, n \in \mathbb{N}$, $a_{m}-a_{n}<V$. Justify your answer (ie, calculate V for your sequence and prove that your calculation is correct. Then verify the given property).

Solution. Let $a_{n}=(-1)^{n}(1-1 / n)$. Observe that $\left|a_{n}\right|=|1-1 / n| \leq 1$. Hence $\lim \sup a_{n} \leq 1$ and $\lim \inf a_{n} \geq-1$. We claim that these are actually equalities. It suffices to find subsequences of a_{n} converging to 1 and -1 , respectively. Notice that

$$
a_{2 n}=1-1 /(2 n) \quad a_{2 n+1}=-(1-1 /(2 n+1)) .
$$

By the limit arithmetic theorem, $a_{2 n} \rightarrow 1$ and $a_{2 n+1} \rightarrow-1$. It follows that $V=\limsup a_{n}-$ $\liminf a_{n}=1-(-1)=2$.

Now, we claim that $a_{m}-a_{n}<2$ for all $m, n \in \mathbb{N}$. Indeed, notice that $-1<a_{m}, a_{n}<1$ for all $m, n \in \mathbb{N}$. Hence $a_{m}-a_{n}$ is strictly less than the length of the interval, which is 2 .

